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Abstract. We carry out the extension of the Ostrogradski method to relativistic field theories.
Higher-derivative Lagrangians reduce to second differential order with one explicit independent
field for each degree of freedom. We consider a higher-derivative relativistic theory of a scalar
field and validate a powerful order-reducing covariant procedure by a rigorous phase-space
analysis. The physical and ghost fields appear explicitly. Our results strongly support the
formal covariant methods used in higher-derivative gravity.

1. Introduction

Theories with higher-order Lagrangians have an old tradition in physics, and Podolski’s
generalized electrodynamics [1] (later visited as a useful testbed [2]), effective gravity
and tachyons [3] are examples. Interest in higher-order mechanical systems is still alive
today [4].

Theories of gravity with terms of any order in curvatures arise as part of the low-
energy effective theories of strings [5] and from the dynamics of quantum fields in a
curved spacetime background [6]. Theories of second-order (four-derivative theories in the
following) have been studied more closely in the literature because they are renormalizable
[7] in four dimensions. Phenomenological applications arose that spurred further theoretical
interest, as illustrated by the most comprehensive introductory study available [8]. In fact,
they greatly affect the effective potential and phase transitions of scalar fields in curved
spacetime, with a wealth of astrophysical and cosmological properties [9]. A procedure
based on the Legendre transformation was devised [10] to recast them as an equivalent
theory of second differential order. A suitable diagonalization of the resulting theory was
found later [11] that yields the explicit independent fields for the degrees of freedom (DOF)
involved, usually including Weyl ghosts.

In [12] the simplest example of this procedure was given using a model of one scalar
field with a massless and a massive DOF. In an appendix, Barth and Christensen [13] gave
the splitting of the higher-derivative (HD) propagator into quadratic ones for the fourth,
sixth and eighth differential-order scalar theories. A scalar six-derivative theory has been
considered in [14] as a regularization of the Higgs model, yielding a finite theory.

Classical treatises [15] study the Lagrangian and Hamiltonian theories of systems with
a finite number of DOF and higher time derivatives of the generalized coordinates. Later
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work has considered the variational problem of those theories with the tools of the Cartan
form, k-jets, symplectic geometry and Legendre mappings [16].

However, the particular case of relativistic covariant field theories has complications
of its own which are not covered by those general treatments. Our presentation highlights
the Lorentz covariance and the particle aspect of the theory, with emphasis in the structure
of the propagators and the coupling to other matter sources. We address this issue by
using a simplified model with scalar fields as in [12, 13], and our extrapolation of the
canonical analysis to these continous systems validates the formal procedures introduced
there. The analysis presented here mostly focuses on the free part of the Lagrangian, and
self-interactions and interactions with other fields are embodied in a source term.

In section 2 we briefly review the Ostrogradski method and outline our extension to the
field theories. In section 3 we study the case of the four-derivative theory for arbitrary non-
degenerate masses, which exemplifies the use of the Helmholtz Lagrangian and the crucial
diagonalization of the fields. The eight-derivative case and higher 4N -derivative cases are
considered in section 4. For evenN the 2N -derivative cases present some peculiarities that
deserve the separate discussion of section 5. Our results are summarized in the conclusion.

As a general feature, our procedure involves vectors with pure real and imaginary
components as well as symmetric matrices with equally assorted elements. Diagonalizing
symmetric matrices of this kind is a non-standard task which is detailed in the appendix.

2. Ostrogradski’s method

We consider a HD Lagrangian theory for a system described by configuration variablesq(t).
By dropping total derivatives, it can always be brought to a standard form

L[q, q̇, q̈, . . . ,
(m)
q ] (2.1)

depending on time derivatives of the lowest possible order. The variational principle then
yields equations of motion which are of differential order 2m at most:

∂L

∂q
− d

dt

∂L

∂q̇
+ · · · + (−1)m

dm

dtm
∂L

∂
(m)
q

= 0. (2.2)

Hamilton’s equations are obtained by definingm generalized momenta

pm ≡ ∂L

∂
(m)
q

pi ≡ ∂L

∂
(i)
q

− d

dt
pi+1 (i = 1, . . . , m− 1)

(2.3)

andm independent variables

q1 ≡ q
qi ≡ (i−1)

q (i = 2, . . . , m).
(2.4)

Then the Lagrangian may be considered to depend on the coordinatesqi and only on the

first time derivativeq̇m = (m)
q . A Hamiltonian on the phase space [qi, pi ] may then be found

by working q̇m out of the first equation (2.3) as a function

q̇m[q1, . . . , qm;pm] (2.5)
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the remaining velocitieṡqi (i = 1, . . . , m − 1) already being expressed in terms of
coordinates, because of (2.4), as

q̇i = qi+1. (2.6)

Thus

H [qi, pi ] =
m∑
i=1

pi q̇i − L =
m−1∑
i=1

piqi+1+ pmq̇m − L[q1, . . . , qm; q̇m]. (2.7)

Therefore

δH =
m−1∑
i=1

(piδqi+1+ qi+1δpi)+ pmδq̇m + q̇mδpm −
m∑
i=1

∂L

∂qi
δqi − ∂L

∂q̇m
δq̇m (2.8)

but (2.3) can be written as

∂L

∂q̇m
= pm

∂L

∂qi
= ṗi + pi−1 (i = 2, . . . , m)

(2.9)

and (2.2), because of (2.3), gives

∂L

∂q1
= ∂L

∂q
= ṗ1 (2.10)

so we obtain

δH =
m∑
i=1

(−ṗiδqi + q̇iδpi) (2.11)

and the canonical equations of motion turn out to be

q̇i = ∂H

∂pi
ṗi = −∂H

∂qi
. (2.12)

Summarizing we may say that a theory with one configuration coordinateq obeying
equations of motion of 2m differential order (stemming from a Lagrangian with quadratic

terms in
(m)
q as its highest-derivative dependence) can be cast as a set of first-order canonical

equations for 2m phase-space variables [qi, pi ].
As is well known, once the differential order has been reduced by the Hamiltonian

formalism, one may prefer to obtain the same canonical equations of motion from a
variational principle. Then the canonical equations (2.12) are the Euler equations of the
so-called Helmholtz Lagrangian

LH [qi, q̇i , pi ] =
m∑
i=1

piq̇i −H [qi, pi ] (2.13)

which depends on the 2m coordinatesqi and pi , and only on the velocitieṡqi . This
alternative setting will be adopted later on.

As far as finite-dimensional mechanical systems are concerned, only time derivatives
are involved. The generalized momenta above have a mechanical meaning and the resulting
Hamiltonian is the energy of the system up to problems of positiveness linked to the
occurrence of ghost states.
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2.1. Extension to field theories

Continuous systems with field coordinatesφ(t,x) usually involve space derivatives as well,
chiefly if relativistic covariance is assumed. We now generalize the previous formalism to
this case. A HD field Lagrangian density will have the general dependence

L[φ, φµ, . . . , φµ1...µm ] (2.14)

whereφµ1...µi ≡ ∂µ1 . . . ∂µi φ, with corresponding equations of motion

∂L
∂φ
− ∂µ ∂L

∂φµ
+ · · · + (−1)m∂µ1 . . . ∂µm

∂L
∂φµ1...µm

= 0. (2.15)

The generalized momenta now are

πµ1...µm ≡ ∂L
∂φµ1...µm

πµ1...µi ≡ ∂L
∂φµ1...µi

− ∂µi+1π
µ1...µiµi+1 (i = 1, . . . , m− 1).

(2.16)

Though they do not have a direct mechanical meaning of impulses they still are suitable to
perform a Legendre transformation upon.

Assuming also that the highest derivative can be worked out of the first equation of
(2.16) as a function̄φµ1...µm [φ, φµ, . . . , φµ1...µm−1;πµ1...µm ], the ‘Hamiltonian’ density is now

H[φ, φµ, . . . , φµ1...µm−1;πµ, . . . , πµ1...µm ] = πµφµ + · · · + πµ1...µm−1φµ1...µm−1

+πµ1...µm φ̄µ1...µm − L[φ, φµ, . . . , φ̄µ1...µm ]. (2.17)

Then the canonical equations are

∂µφ = ∂H
∂πµ

, ∂µφν = ∂H
∂πµν

, . . . , ∂µφµ1...µm−1 =
∂H

∂πµµ1...µm−1
,

∂µπ
µ = −∂H

∂φ
, ∂νπ

µν = − ∂H
∂φµ

, . . . , ∂σπ
µ1...µm−1σ = − ∂H

∂φµ1...µm−1

.

(2.18)

This general setting may be hardly applicable to systems of practical interest (generally
involving internal symmetries and/or fields belonging to less trivial Lorentz representations)
if suitable strategies are not adopted to refine the method. One crucial observation is that
the momenta may be defined in more useful and general ways than the plain one introduced
in (2.16): instead of differentiating with respect to the simple field derivativesφµ1...µi one
may consider combinations of field derivatives of different orders belonging to the same
Lorentz and internal group representations. For instance, in HD gravity [10], the Ricci
tensor is the most suited combination of second derivatives of the metric tensor field. The
only condition is that the Lagrangian be regular in the highest ‘velocity’ so defined. This
will be made clear in the following.

In fact this general Ostrogradski treatment can be significantly simplified for the Lorentz
invariant theory of a scalar field, which is the example we will consider in this paper. In
this case, dropping total derivatives, the general form (2.14) can be expressed in a more
convenient way that singles out the free quadratic part, namely

L = − c
2
φ[[1]][[2]] . . . [[N ]]φ − jφ (2.19)

where [[i]] ≡ (�+m2
i ), our Minkowski signature is(+,−,−,−) so that� ≡ ∂2

t −4, and
c is a dimensional constant. The masses are ordered such thatmi > mj wheni < j so that
the objects〈ij〉 ≡ (m2

i −m2
j ) are always positive wheni < j .
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It turns out to be very advantageous to consider only Lorentz invariant combinations of
derivatives of the type�nφ and of theφ field itself with suitable dimensional coefficients.
Further, it is even more useful to consider expressions of the form [[i]]nφ.

Thus, arbitrarily focusing ourselves oni = 1 without loss of generality, equation (2.19)
may be recast as

L = 1
2

N∑
n=1

cnφ[[1]] nφ − jφ (2.20)

where thecn are redefined constants.
Callingm = N

2 for evenN , andm = N+1
2 for oddN , the motion equation now reads

m∑
n=1

[[1]] n
∂L

∂([[1]] nφ)
=

N∑
n=1

cn[[1]] nφ − j. (2.21)

The Legendre transform can now be performed upon the simpler set ofgeneralized momenta

πm = ∂L
∂([[1]] mφ)

πm−1 = ∂L
∂([[1]] m−1φ)

+ [[1]]πm

· · · · · ·
πs = ∂L

∂([[1]] sφ)
+ [[1]]πs+1 (s = 1, . . . , m− 2).

(2.22)

The Hamiltonian will depend on the new phase-space coordinatesH [φ1, . . . , φm;
π1, . . . , πm], whereφi ≡ [[1]] i−1φ. To this end [[1]]mφ has been worked out of the first
(2.22) for evenN , or of the second (2.22) for oddN , in terms of these coordinates.

The dynamics of the system is given by the 2m equations of second order

[[1]]φi = ∂H

∂πi

[[1]]πi = ∂H

∂φi
(i = 1, . . . , m).

(2.23)

Notice that, in comparison with (2.12), (2.16) and (2.18), no negative sign occurs in both
(2.22) and (2.23), because each step now involves two derivative orders.

As a final comment, the treatment followed above keeps Lorentz invariance explicitly,
and this will turn out to be advantageous later on. The price has been that neither do
the π ’s have the meaning of mechanical momenta nor doesH depend on the energy of
the system. However, they are adequate for providing a set of ‘canonical’ equations that
correctly describe the evolution of the system. Moreover, these equations are Lorentz
invariant and of second differential order, which will lend itself to an almost direct particle
interpretation.

One may, however, choose to work with the genuine Hamiltonian and mechanical
momenta obtained when the Legendre transformation built-in in the Ostrogradski method
involves only the true ‘velocities’∂nt φ. The price now is losing the explicit Lorentz
invariance and facing more cumbersome calculations, as we will see by an example in
the second part of the next section.
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3. N = 2 theories

These theories allow a particularly simple treatment that will be illustrated in the examples
N = 2 andN = 4. The equations (2.23) forN = 2 will now be obtained from a
Helmholtz-like Lagrangian of second differential order, which is closer to a direct particle
interpretation.

Consider theN = 2 Lagrangian

L4 = −1

2

1

M
φ[[1]][[2]] φ − jφ (3.1)

with non-degenerate massesm1 > m2. Taking the dimensional constantM = (m2
1−m2

2) ≡
〈12〉 > 0, equation (3.1) yields the propagator

− 〈12〉
[[1]][[2]]

= 1

[[1]]
− 1

[[2]]
. (3.2)

We thus see that the pole atm2 then corresponds to a physical particle and the one atm1 to
a negative norm ‘poltergeist’. The second-order Lagrangian we are seeking should describe
two fields with precisely the particle propagators occurring in the r.h.s. of (3.2).

The Lagrangian (3.1) can be brought to the form (2.20), namely

L4[φ, [[1]]φ] = −1

2

1

〈12〉 [φ[[1]] 2φ − 〈12〉φ[[1]]φ] − jφ

= −1

2

1

〈12〉 [([[1]]φ)2− 〈12〉φ([[1]]φ)] − jφ (3.3)

where the relationship [[2]]= [[1]] − 〈12〉 has been used.
We define one momentum

π = ∂L
∂([[1]]φ)

(3.4)

from which [[1]]φ is readily worked out, obtaining

H4[φ, π ] = − 1
2〈12〉(−π + 1

2φ)
2+ jφ (3.5)

and the Helmholtz-like Lagrangian is

L4
H [φ, [[1]]φ, π ] = π [[1]]φ −H[φ, π ]. (3.6)

It contains mixed termsπφ that obscure the particle contents. The diagonalization is
achieved by new fieldsφ1, φ2

φ = φ1+ φ2

π = 1
2(φ1− φ2)

(3.7)

to yield

L2 = 1
2φ1[[1]]φ1− 1

2φ2[[2]]φ2− j (φ1+ φ2) (3.8)

where the particle propagators in the r.h.s. of (3.2) are apparent. This result is physically
meaningful: where we had a single fieldφ, coupled to a sourcej , propagating with the
quartic propagator in the l.h.s. of (3.2) as implied by the HD Lagrangian (3.1), we now have
two fieldsφ1, φ2 describing particles with quadratic propagators, and the source couples to
the sumφ1+ φ2.
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A deeper insight of the phase-space structure of the theory can be achieved by the plain
use of the Ostrogradski method, eventually confirming the final form (3.8). In order to
explicitly show the velocities, we write (3.1) in the form of the Lagrangian density

L4 = −1

2

1

〈12〉 {(∂
2
t φ)

2− (∂tφ)S(∂tφ)+ φPφ} − jφ (3.9)

whereS ≡ M2
1 +M2

2, P ≡ M2
1M

2
2 andM2

i ≡ m2
i − 4 are operators containing the space

derivatives.
The Ostrogradski formalism yields the Hamiltonian density

H4[φ, φ̇;π1, π2] = −1

2
〈12〉π2

2 + π1φ̇ − 1

2

1

〈12〉 φ̇Sφ̇ +
1

2

1

〈12〉φPφ + jφ (3.10)

that depends on the phase-space coordinatesφ, φ̇, π1, π2 and on their space derivatives. The
highest-order ‘velocity’∂2

t φ has been worked out of the momenta

π2 ≡ ∂L4

∂(∂2
t φ)
= − 1

〈12〉∂
2
t φ

π1 ≡ ∂L4

∂(∂tφ)
− ∂tπ2.

(3.11)

The canonical equations may be derived from the Helmholtz Lagrangian

L4
H [φ, φ̇;π1π2; ∂tφ, ∂t φ̇] = π2∂t φ̇ + π1∂tφ + 1

2
〈12〉π2

2 − π1φ̇

+1

2

1

〈12〉 φ̇Sφ̇ −
1

2

1

〈12〉φPφ − jφ. (3.12)

This is a Lagrangian density of first order in time derivatives, and we express it in matrix
form for later convenience:

L4
H = 1

28
Tµ6∂t8+ 1

28
TM48− J T8 (3.13)

whereµ is an arbitrary mass parameter and

8 ≡


π2

µ−1φ̇

µ−1π1

φ

 6 ≡


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



M4 ≡


〈12〉 0 0 0

0 µ2S

〈12〉 −µ2 0

0 −µ2 0 0
0 0 0 − P

〈12〉

 J ≡


0
0
0
j


(3.14)

with mass dimensions [8] = 1, [M4] = 2 and [J ] = 3.
In order to relate (3.13) to (3.8), we have to convert the latter into a first-order theory

as well. This is readily done by expressing the velocities∂tφ1 and ∂tφ2 in terms of the
momenta

π̃1 ≡ ∂L2

∂(∂tφ1)
= −∂tφ1

π̃2 ≡ ∂L2

∂(∂tφ2)
= ∂tφ2

(3.15)

so that

H2[φ1, φ2, π̃1, π̃2] = − 1
2π̃

2
1 + 1

2π̃
2
2 − 1

2φ1M
2
1φ1+ 1

2φ2M
2
2φ2+ j (φ1+ φ2). (3.16)
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The Helmholtz Lagrangian that yields the canonical equations is now

L2
H = 1

22
Tµ6∂t2+ 1

22
TM22− J TZ2 (3.17)

where

2 ≡


µ−1π̃1

φ1

µ−1π̃2

φ2

 M2 ≡


µ2 0 0 0
0 M2

1 0 0
0 0 −µ2 0
0 0 0 −M2

2

 (3.18)

with mass dimensions [2] = 1 and [M2] = 2, andZ is any matrix with the fourth row
equal to(0, 1, 0, 1).

The field redefinition analogous to the diagonalizing equations (3.7) is now a 4× 4
mixing of fields given by

8 = X2 (3.19)

where the invertible matrix

X ≡


0 − M2

1
〈12〉 0 − M2

2
〈12〉−1 0 1 0

− M2
2
〈12〉 0 M2

1
〈12〉 0

0 1 0 1

 (3.20)

verifies

X T 6X = 6 (3.21)

X TM4X =M2 (3.22)

so we can identifyZ = X .
We thus see that (3.19) translates (3.13) into (3.17), and therefore the Lagrangians (3.9)

and (3.8) are again seen to be equivalent. The derivation of the matrixX is cumbersome
but contains interesting details that justify the appendix. Notice that the components of8

are expressed by (3.19) in terms of the components of2 and of their space derivatives.
This is not surprising as long asπ1, given by (3.11), contains space derivatives ofφ as
well.

Though the plain non-covariant Ostrogradski method we have just implemented
eventually shows up the Lorentz invariance, the readiness of the explicitly covariant
procedure formerly introduced in this section is apparent. The non-covariant approach
using the canonical Hamiltonian and mechanical momenta is rigorous and validates the
former, but involves more bulky diagonalizing matrices with elements that contain space
derivatives.

4. N = 4 and higher evenN theories

We treat theN = 4 theory with the far more practical Lorentz-invariant method of the
previous section. Otherwise one would have to face the diagonalization of 8× 8 matrices
analogous toM̂2 andM̂4 in the appendix. Our Lagrangian is now

L8 = −1

2

µ6

M
φ[[1]][[2]][[3]][[4]] φ − jφ (4.1)

where the mass dimensions [µ] = [φ] = 1, [M] = 12 and [j ] = 3 are such that [L8] = 4.
TakingM = 〈12〉〈13〉〈14〉〈23〉〈24〉〈34〉, equation (4.1) treats the massesmi (i = 1, . . . ,4)
on an equal footing, which is apparent in the propagator

− µ−6M

[[1]][[2]][[3]][[4]]
= 〈1〉

[[1]]
− 〈2〉

[[2]]
+ 〈3〉

[[3]]
− 〈4〉

[[4]]
(4.2)
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where〈i〉 ≡ µ−6M
∏
j 6=i

1
〈ij〉 (remind the ordering conventioni < j ) with mass dimensions

[〈i〉] = 0.
As for (3.2), the propagator expansion (4.2) suggests that the lower-derivative equivalent

theory should now be

L2 = 1

2

1

〈1〉φ1[[1]]φ1− 1

2

1

〈2〉φ2[[2]]φ2+ 1

2

1

〈3〉φ3[[3]]φ3

−1

2

1

〈4〉φ4[[4]]φ4− j (φ1+ φ2+ φ3+ φ4). (4.3)

We derive this Lagrangian from (4.1) in the following. In matrix form, (4.3) reads

L2 = 1
2τ

T [[1]] Iτ + 1
2τ

TM2τ − J T Fτ (4.4)

where

τ ≡


〈1〉− 1

2φ1

−i〈2〉− 1
2φ2

〈3〉− 1
2φ3

−i〈4〉− 1
2φ4

 J ≡


0
0
0
j

 M2 ≡


0 0 0 0
0 −〈12〉 0 0
0 0 −〈13〉 0
0 0 0 −〈14〉

 (4.5)

I is the 4 × 4 identity, and F is any matrix with the fourth row equal to
(〈1〉 1

2 , i〈2〉 1
2 , 〈3〉 1

2 , i〈4〉 1
2 ).

By dropping total derivatives we express (4.1) in a standard form involving derivatives
of the lowest possible order, namely

L8[φ, [[1]]φ, [[1]] 2φ] = −1

2

µ6

M
{([[1]] 2φ)2− S([[1]]φ)([[1]] 2φ)

+p([[1]]φ)2− Pφ([[1]]φ)} − jφ (4.6)

whereS ≡ 〈12〉 + 〈13〉 + 〈14〉, p ≡ 〈12〉〈13〉 + 〈12〉〈14〉 + 〈13〉〈14〉, andP ≡ 〈12〉〈13〉〈14〉.
Ostrogradski-like momenta are defined as follows

π2 = ∂L8

∂([[1]] 2φ)
= −µ

6

M
([[1]] 2φ)+ µ

6S

2M
[[1]]φ

π1 = ∂L8

∂([[1]]φ)
+ [[1]]π2.

(4.7)

From the first of (4.7) the highest derivative is worked out, namely

[[1]] 2φ[π2, [[1]]φ] = −M
µ6
π2+ S

2
([[1]]φ). (4.8)

The ‘Hamiltonian’ functional is

H8[ψ1, ψ2, π1, π2] = π2[[1]] 2φ + π1ψ2− L8[ψ1, ψ2, [[1]] 2φ] (4.9)

whereψ1 ≡ φ andψ2 ≡ [[1]]φ. Its canonical equations can be derived from the Lagrangian

L8
H = 1

28
T [[1]]K8+ 1

28
TM88− J T8 (4.10)

whereJ is the same as in (4.5),

8 ≡


µ2π2

µ−2ψ2

π1

ψ1

 K ≡


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



M8 ≡


µ−10M − S

2 0 0

− S
2 −µ−10

M
(p − S2

4 ) −µ2 µ2

2〈1〉
0 −µ2 0 0
0 µ2

2〈1〉 0 0

 .
(4.11)
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Prior to its diagonalization we write (4.10) in the form

L8
H = 1

2�
T [[1]] I�+ 1

2�
T M̂8�− J TDT � (4.12)

where� ≡ (DT )−18, with

D ≡ 1√
2


1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 (4.13)

and

M̂8 ≡ DM8D−1 = 1

2


M− − S −iM+ −µ21− iµ21+
−iM+ −(M− + S) −iµ21− −µ21+
−µ21− −iµ21− 0 0
iµ21+ −µ21+ 0 0

 (4.14)

with M± ≡ M
µ10 ± µ10

M
(p − S2

4 ) and 1± ≡ 1± 1
2〈1〉 .

Now the task is to establish the equivalence of (4.12) and (4.4). One may first check
that the eigenvaluesλi (i = 1, . . . ,4) of M̂8 are the diagonal elements ofM2 in (4.5).
The orthogonal matrixT that diagonalizesM̂8 is obtained by working out its orthonormal
eigenvectors|λi〉 with the suitable sign, and arranging them in columns. These are

|λ1〉 = 〈1〉
1
2√

2


0
0

1+
−i1−



|λj 〉 = i(1−δ3j )〈j〉 1
2√

2[− 2
µ10M + 2〈1j〉 − S]


2
µ2 [− µ4

〈1〉 + 〈1j〉(2〈1j〉 − S −M−)]
i 2
µ2 [− µ4

〈1〉 + 〈1j〉M+]

1−[−2µ−10M + 2〈1j〉 − S]
−i1+[−2µ−10M + 2〈1j〉 − S]


(4.15)

wherej = 2, 3, 4. If I is the identity matrix, we therefore have

T T IT = I T T M̂8T =M2 (4.16)

and the fourth row ofDT T can be seen to be(〈1〉 1
2 , i〈2〉 1

2 , 〈3〉 1
2 , i〈4〉 1

2 ), i.e. it has the required
form for F . Then, by taking� = T τ , (4.12) is identical to (4.4).

The general case for evenN > 6 in the covariant treatment would involveN2
Ostrogradski-like momenta and the diagonalization of anN × N mass matrix. The non-
covariant Ostrogradski method introduced in section 3, which reduces the theory to a
first differential-order form, would now involve 2N × 2N matrices. In both treatments
the procedure would follow analogous paths, albeit with the occurrence of intractable
eigenvector and diagonalization problems.

5. N = 3 and higher oddN theories

ForN = 3, the HD Lagrangian

L6 = −1

2

µ2

M
φ[[1]][[2]][[3]] φ − jφ (5.1)

whereM ≡ 〈12〉〈13〉〈23〉 and [L6] = 4, yields the propagator

− µ−2M

[[1]][[2]][[3]]
= −µ

−2〈23〉
[[1]]

+ µ
−2〈13〉
[[2]]

− µ
−2〈12〉
[[3]]

. (5.2)
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Then, the expected equivalent second-order theory is

L2 = −1

2

µ2

〈23〉φ1[[1]]φ1+ 1

2

µ2

〈13〉φ2[[2]]φ2− 1

2

µ2

〈12〉φ3[[3]]φ3− j (φ1+ φ2+ φ3). (5.3)

Already for N = 3, the non-covariant Ostrogradski method becomes exceedingly
cumbersome. In fact, it reduces both (5.1) and (5.3) to first differential order in time.
Proving the equivalence of those theories then involves the diagonalization of 6×6 matrices
(the counterpart ofM̂4 andM̂2 in (A.4)), although with a reasonable amount of work it
can still be checked that both mass matrices have the same eigenvalues, namely±µM1,
±µM2 and±µM3. Finding the eigenvectors and building up the compound diagonalizing
transformation does not justify the effort.

For the oddN theories, the covariant method exhibits an interesting feature. Without
loss of generality we again single out the Klein–Gordon operator [[1]] and write (5.1) as

L6[φ, [[1]]φ, [[1]] 2φ] = −1

2

µ2

M
{(]]1]]φ)(]]1]] 2φ)− S(]]1]]φ)2+ Pφ(]]1]]φ)} − jφ (5.4)

where nowS ≡ 〈12〉 + 〈13〉 andP ≡ 〈12〉〈13〉.
The momenta are

π2 = ∂L6

∂([[1]] 2φ)
= −1

2

µ2

M
[[1]]φ

π1 = ∂L6

∂([[1]]φ)
+ [[1]]π2 = −µ

2

M
[[1]] 2φ + µ

2

M
S[[1]]φ − 1

2

µ2

M
Pφ.

(5.5)

Unlike in (4.7), the highest derivative is now worked out ofπ1 (instead ofπ2), namely

[[1]] 2φ[φ, [[1]]φ, π1] = −M
µ2
π1+ S[[1]]φ − 1

2
Pφ (5.6)

and, in terms of the coordinatesπ1, π2, ψ1 ≡ φ andψ2 ≡ [[1]]φ, the ‘Hamiltonian’ reads

H6[ψ1, ψ2, π1, π2] = π2[[1]] 2φ + π1ψ2− L6[ψ1, ψ2, [[1]] 2φ]. (5.7)

The Helmholtz Lagrangian is

L6
H [ψ1, ψ2, π1, π2] = π2[[1]]ψ2+ π1[[1]]ψ1+ M

µ2
π1π2− Sπ2ψ2

+1

2
Pπ2ψ1− 1

2
π1ψ2− µ2

4M
Pψ1ψ2− jψ1. (5.8)

The distinctive feature of the oddN cases is that the first of (5.5), namelyπ2 = − 1
2
µ2

M
ψ2,

is a constraint that guarantees the relationship [[1]]ψ1 = ψ2, so one just hasN degrees of
freedom. For evenN it arises directly as an equation of motion. Moreover, unlike the
Dirac Lagrangian for spin-12 fields or the constraints introduced by means of multipliers, the
constraint above can be freely imposed on the Lagrangian since it does not eliminate the
dependence on the remaining variablesψ1 andπ1. Thus, (5.8) can be expressed in terms
of only the three fieldsψ1, π1 andπ2:

L6
H [ψ1, π1, π2] = 1

28
T [[1]]K′8+ 1

28
TM38− J T8 (5.9)
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where

8 ≡
(
µ2π2

π1

φ

)
J ≡

( 0
0
j

)

K′ ≡
(−4M

µ6 0 0
0 0 1
0 1 0

)

M3 ≡
 4MS

µ6 2M
µ4

P
µ2

2M
µ4 0 0
P
µ2 0 0

 .
(5.10)

The Lagrangian (5.9) is expected to be equivalent to (5.3), which in matrix form reads

L2 = − 1
2τ

T [[1]] Iτ + 1
2τ

TM′2τ − J TGτ (5.11)

whereI is the 3× 3 identity matrix,

τ ≡
(
µ〈23〉− 1

2φ1

iµ〈13〉− 1
2φ2

µ〈12〉− 1
2φ3

)
M′2 ≡

( 0 0 0
0 〈12〉 0
0 0 〈13〉

)
(5.12)

andG is any matrix with the third row given by(µ−1〈23〉 1
2 ,−iµ−1〈13〉 1

2 , µ−1〈12〉 1
2 ).

The transformation of (5.9) into (5.11) is performed by the field redefinition

8 = D′T τ (5.13)

where

D′ ≡ 1√
2

 µ3√
2M

0 0
0 −i −1
0 −i 1

 (5.14)

andT is an orthogonal matrix built up with the eigenvectors ofD′TM3D′, namely

T = µ

2
√

2
〈23〉− 1

2

 0 i 2
√

2
µ
〈12〉 1

2 − 2
√

2
µ
〈13〉 1

2

−i P−
P

P+√
M
〈12〉− 1

2 i P+√
M
〈13〉− 1

2

P+
P

i P−√
M
〈12〉− 1

2 − P−√
M
〈13〉− 1

2

 (5.15)

with P± ≡ P ± µ−22M.
ThenD′TK′D′ = −I and T TD′TM3D′T = M′2. One may also check thatD′T has

the same third row required forG.
The covariant treatment of the general oddN > 5 case proceeds along the same lines.

Initially (N +1)/2 Ostrogradski coordinates plus the corresponding momenta occur. Again
the definition of the highest momentum yields a constraint with the same meaning as above,
while the highest field derivative is worked out of the next momentum definition. Then one
faces the diagonalization of a Helmholtz Lagrangian depending on justN fields.

Already in theN = 3 case one might have chosen not to implement the constraint on
the Lagrangian (5.8) and allowed it to arise in the equations of motion. These equations
are the canonical ones for the Hamiltonian (5.7) and involve an even number of variables,
as required by phase space. Thus one keeps the dependence of the Lagrangian (5.8) on the
four fieldsψ1, ψ2, π1 and π2. Notwithstanding this enlarged dependence, it may still be
diagonalized by new fieldsφ1, φ2, φ3 and ζ , the (expected) surprise being thatζ does not
couple to the sourcej . It is a spurious field, which moreover vanishes when the constraint
is implemented. We skip here the details of this derivation.
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6. Conclusions

We have shown the physical equivalence between relativistic HD theories of a scalar field
and a reduced second differential-order counterpart. The free part of the HD scalar theories
can always be brought to the form (2.19) by integrating by parts, and the only limitation of
our procedure is the non-degeneracy of the resulting Klein–Gordon masses, i.e. we consider
regular Lagrangians. The existence of a lower-derivative version is already suggested by the
algebraic decomposition of the HD propagator into a sum of second-order pieces showing
(physical and ghost) particle poles. The order-reducing programme we have developed relies
on an extension of the Legendre transformation procedure, on the use of the modified action
principle (Helmholtz Lagrangian) and on a suitable diagonalization. A basic ingredient of
this programme is the Ostrogradski formalism, which we have extended to field systems.

Two approaches have been worked out. The first one follows Ostrogradski more closely
by defining generalized momenta and Hamiltonians with a standard mechanical meaning, at
the price of treating time separately and losing the explicit Lorentz invariance. It validates
a second and more powerful one which is explicitly Lorentz invariant. The rigorous non-
invariant phase-space analysis also strongly backs the formal covariant methods used in HD
gravity, whereRµν [g, ∂g, ∂2g] and�hµν (in the linearized theory) are used in the Legendre
transformation.

The HD theories of the scalar field we have considered are generalized Klein–Gordon
theories, and hence of 2N differential order according to the numberN of Klein–Gordon
operators involved. While the non-invarint approach treats all the theories with equal
footing, the oddN and the evenN cases feature qualitative differences in the invariant
method. Also the ratio of physical versus ghost fields varies. For evenN one findsN/2
fields of each type. For oddN one has(N − 1)/2 ghost (physical) and(N + 1)/2 physical
(ghost) fields according to the overall negative (positive) sign of the free part of the HD
Lagrangian. The squared masses may be shifted by an arbitrary common ammount, since
only their differences are involved in the procedure. Then any of them may be zero (only
one in this case), or tachyonic.

On the other hand, the non-invariant procedure gets exceedingly cumbersome already
for N = 3, in contrast with the (more compact) invariant one which remains tractable
up to N = 4 at least. Both approaches are applicable to higherN , only at the price of
increasing the length of the calculations (namely analitically diagonalizingN×N matrices).
An intriguing feature of the oddN cases when treated with the invariant method is the
occurrence of a constraint on an otherwise overabundant set of Ostrogradski-like coordinates
and momenta, together with a less conventional way of working out the highest field
derivative. Ignoring the constraint causes the appearance of a spurious decoupled scalar
field.
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Appendix

The problem of finding a matrixX with the properties (3.21) and (3.22) can be brought to
the one of diagonalizing a symmetric 4× 4 matrix with pure real and imaginary elements.
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The procedure is somehow tricky since there is no similarity-like transformation that brings
the symplectic matrix6 to the identity matrix, thus preventing a plain use of the weaponry
of orthonormal transformations. We introduce the diagonal matricesf ≡ diag(i, 1, 1,−i)
andg ≡ diag(1, i, i,−1) so that

6 = gKf whereK ≡


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (A.1)

Takingf 6= g does not compromise the uniqueness of the transformation8→ 2 as shown
at the end.

Now we transform the symmetric matrixK into the 4× 4 identity by a similarity
transformation

D = 1√
2


1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 (A.2)

so that

DKDT = Dg−16f −1DT = I. (A.3)

This same transformation convertsM4 andM2 into

M̂4 = Dg−1M4f
−1DT

M̂2 = Dg−1M2f
−1DT .

(A.4)

Notice thatM̂2 andM̂4 are symmetric as well. This is a consequence of the vanishing
of some critical elements in both matrices. One then verifies that they have the same
eigenvalues, namely−iµM1, iµM1, iµM2 and −iµM2, so that there exist orthogonal
matricesR andT such that

T T M̂4T = RT M̂2R = iµ diag(−M1,M1,M2,−M2) (A.5)

while conserving the euclidean metricI :

RT IR = T T IT = I. (A.6)

With the orthonormal eigenvectors as columns one obtains

R = 1

2
√
µ


−R+1 −iR−1 0 0
−iR−1 R+1 0 0

0 0 R+2 iR−2
0 0 iR−2 −R+2

 (A.7)

where

R±i ≡
Mi ± µ√
Mi

(A.8)

and

T = 1

2〈12〉√µ


T +1 −iT −1 −T −2 iT +2
iT −1 T +1 −iT +2 −T −2
P−1 iP+1 P+2 iP−2
iP+1 −P−1 iP−2 −P+2

 (A.9)
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where

T ±i ≡
√
Mi

(
µ
√
Mi ± 〈12〉

)
P±i ≡

〈12〉√Mi

M2
i

(
P

〈12〉 ± µMi

)
.

(A.10)

Notice that one has pure real and imaginary matrix elements and vector components, and
that the norm of a vector, defined as|V | ≡ V T V , may be imaginary as well. Since
M2
i ≡ m2

i −4, a regularization (the dimensional one, for instance) is understood such that
R andT have well-defined elements.

Finally, from (A.4) and (A.5) one finds

YM4W =M2 (A.11)

whereW ≡ f −1DT T RTD−1T f and Y ≡ gD−1RT TDg−1. The matrixW has some
imaginary elements and the fourth row is not(0101), so that it is not suitable to relate the
real vectors8 and2 as in (3.19) yet. Moreover,Y 6= WT . However, one may check that

i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

Y = X T whereX ≡ W


−i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 1

 (A.12)

is the matrix given in (3.20), so that (A.11) writes

X TM4X =M2. (A.13)

Furthermore, from (A.3) and (A.6) one has that

X T 6X = 6. (A.14)

The fourth row ofX has the desired elements(0101) only if suitable signs are chosen for
the eigenvectors that build upR andT , so that the handedness of the frame is conserved by
X . We stress thatX is also well defined as a differential operator, and that the regularization
is needed only for defining the intermediate operatorsT andRT . At the end of the process
the regularization can be put off.
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